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1,2-Alkyl migration reactions are common in organoboron,
organocopper, and organozinc chemistry and represent powerful
methods for forming multiple carbon-carbon bonds and generating
structural complexity in a single synthetic operation.1 Scarce
examples of this type of migratory insertion have been described
for organoalanes, and catalytic strategies remain unexplored.2

We report herein that (E)-2,2-disubstituted-1-alkenyldimethyl-
alanes participate in 1,2-alkyl migration from aluminum to carbon
with concomitant arylation at the 2-position when reacted intra-
molecularly with aryl halides and triflates in the presence of a Pd(0)
catalyst to furnish ethyl methyl-substituted benzylic quaternary
carbon centers. From terminal alkynes, a total of three new C-C
single bonds are made, and two of the three alkyl groups on Me3Al
are transferred to the substrate on vicinal carbons (Scheme 1).3

E-Vinylalane2a, prepared from alkyne1a following Negishi’s
alkyne methylalumination protocol,4 was initially subjected to Pd-
(PPh3)4 in toluene at 85°C. Four major cyclic compounds were
generated in a 6:24:12:58 ratio and a 31% combined yield and were
identified as tricycle3 and bicycles4a, 5a, and6a (Scheme 2).5,6

The incorporation of additional methylene and methyl groups,
presumably from the alane moiety, to provide5a and6a, respec-
tively, induced us to explore that unprecedented catalytic C-C
bond-forming transformation.

Synthetically useful yields of5a and6a would be obtained by
preventing formation of both4a and thermally unstable tricycle3.
2,6-Disubstituted aryl triflates and iodide1b-k were prepared and
subjected to the two-step, one-pot procedure. Alkyne methylalu-
minations provided the key alkenylalanes that were isolated by
removal of the volatiles and used without further purification.7 For
the subsequent step, CH3CN was found to be the optimal solvent,
giving good yields of the ligand transfer product. When1c was
treated with Pd(PPh3)4 (25 mol %) for 22 h at 100°C, crude1H
NMR analysis showed a 9:1 mixture of 1-ethyl-1,7-dimethylindan
(6c) and 1,7-dimethyl-1-vinylindan (5c), in addition to the un-
cyclized and desulfonylated uncyclized products. A 42% combined

yield of 5cand6cwas obtained.8 Complete conversion was attained
with Pd[P(p-MeOPh)3]2Cl2 (10 mol %), reduced in situ by Et3N in
the presence of P(p-MeOPh)3 (20 mol %). This catalyst provided
superior results in terms of yields and reproducibility.9 To
circumvent the formation of vinyl byproduct5c, Lewis basic
additives were investigated. After an extensive survey of amines,
it was found that 6 equivalents of DABCO cleanly led to6c in 67%
yield from 1c and that the formation of5c was entirely suppressed
(Table 1, entry 2).

Having established a high-yielding protocol, we set out to define
the scope of the methodology (Table 1). As expected, aryl triflate
1b afforded a low yield of6b. Sterically demanding substrate1d
required higher temperatures and longer reaction times to give
bicycle6d (entry 3), while DABCO greatly reduced the formation
of gem-dimethyl byproduct4d.10 Alternatively, TMS substrate1f
smoothly reacted in 24 h at 100°C (entry 5). Heteroatom-containing
substrates1g-i were tolerated (entries 6-8), but aryl iodide1h
provided a lower yield of6g compared to that of triflate1g, and
thioether1i necessitated harsher conditions than1g. In contrast to
1d and 1j, substrates1e and 1k were resilient to the cyclization
reaction and resulted in the formation of the corresponding
desulfonylated uncyclized byproducts in equimolar amounts (entries
4 and 10).

Two mechanistic proposals accounting for the formation of
products6 are outlined in Scheme 3. Starting from2, formation of
7 by oxidative insertion of Pd(0) into the aryltriflate (or iodide) is

Scheme 1

Scheme 2

Table 1. Scope of the Pd-Catalyzed 1,2-Ligand Transfer Reaction

a See the Supporting Information for details.b Compounds6b-g, 6i, and
6j were contaminated with<6% of thegem-dimethyl byproduct. Bicycle
6h contained 19% of thegem-dimethyl byproduct.c Using Pd(PPh3)4
(25 mol %) in PhMe at 100°C.
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the initial step in both pathways. Alkenylalane carbopalladation
generates dimetallic11 species8 that undergoes 1,2-methyl migration
from aluminum to carbon with concomitant regeneration of Pd(0),
leading to9. Alternatively, 1,2-migration of the methyl group from
aluminum to carbon triggered by electrophilic palladium-triflate7
forms palladacycle10 that reductively eliminates to9.12,13 5-exo-
trig-Carbopalladation is faster than the analogous 6-exo-trig reac-
tion,14 and formation of seven-membered ring palladacycle is slower
than that of six-membered.15 Thus, competition between ring closure
and alkenylalane cross-coupling, leading to oligomerization, may
explain the lower yields obtained for6eand6j. Yield enhancement
for 2,6-disubstituted aryltriflates and isolation of3 support the
carbopalladation pathway.

In the absence of Lewis basic additives, intermediate9 dehy-
droaluminated partially to byproduct5 (Scheme 4).16 DABCO
played a dual role in this transformation by complexing with the
aluminum center: it facilitated 1,2-methyl migration, while sup-
pressing dehydroalumination of9 (Scheme 3).

Deuteriolysis of9g was unsuccessful in CH3CN and suggested
premature protodealumination (Scheme 4).17 When alanes2g or
2h were reacted in CD3CN, deuterium incorporation at the C-1
position of the ethyl group confirmed the intermediacy of9g and
the solvent as proton source in the protodealumination step. From
alane2g, 74-95% deuterium incorporation was determined by
integration of the1H NMR spectrum, and 70% to>95% from alane
2h. Similarly, the cyclization of alane2j in CD3CN yieldedd1-6i,
with 70-80% deuterium incorporation at the C-1 position of the
ethyl group. Furthermore, replacing CH3CN by benzene in the Pd-
catalyzed step allowed for deuteriolysis of the C-Al bond of
intermediate9i with 10% DCl in D2O to furnish tricycled1-6i, for
which a 39% deuterium incorporation at the C1-position of the ethyl
group was determined.

In summary, we demonstrated that Pd(0) catalyzes the 1,2-ligand
migration of 2,2-disubstituted-1-alkenyldimethylalanes from alu-
minum to carbon with concomitant intramolecular arylation at the

2-position to furnish benzylic all-carbon quaternary centers. Further
results of our studies on this reaction will be reported in due course.
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